تجزیه و تحلیل روش گالرکین ناپیوسته برای معادله ی زیرپخش

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
  • author مجید جمالی
  • adviser مهدی تاتاری
  • Number of pages: First 15 pages
  • publication year 1392
abstract

در بعضی موارد با مسایلی روبه رو هستیم که جواب یا مشتق های جواب دارای ناپیوستگی است‏، و از این دیدگاه استفاده از عناصر متناهی پیوسته مناسب این گونه مسایل نیستند. همچنین در حل بعضی مسایل با استفاده از روش گالرکین‏، ماتریس سختی‏، ماتریسی منفرد می شود. برای حل این مسایل از روش گالرکین ناپیوسته استفاده می کنیم. در این پایان نامه ابتدا روش گالرکین ناپوسته و سپس معادله ی زیرپخش معرفی می شوند. در ادامه به حل و آنالیز همگرایی این معادله با استفاده از روش گالرکین ناپیوسته ی قطعه ای خطی و قطعه ای ثابت می پردازیم. مثال ها و نتایج عددی ارایه شده در فصل آخر کارایی و دقت روش مطرح شده را به خوبی نشان می دهد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل عددی معادله برگرز با روش تجزیه آدومیان و روش المان محدود ناپیوسته موضعی گالرکین

معادله برگرز شکل ساده شده ای از معادلات ناویر-استوکس می باشد که ویژگی های غیرخطی معادلات ناویر-استوکس را به خوبی نشان می دهد. در مطالعه حاضر معادله برگرز با شرایط اولیه متفاوت به روش عددی آدومیان (adm) و روش المان محدود ناپیوسته موضعی گالرکین (ldgfem) حل و نتایج حاصل با نتایج حاصل از روش تحلیلی مقایسه می گردد. روش (adm) یک کلاس گسترده ای از معادلات خطی و غیرخطی دیفرانسیل معمولی، معادلات دیفرانس...

حل عددی معادله جریان و انتقال جرم در محیط متخلخل با استفاده از روش گالرکین ناپیوسته

در این تحقیق به بررسی و ارزیابی روش های گالرکین ناپیوسته در شبیه سازی معادله انتقال جرم و جریان پرداخته شده است. برای این منظور معادلات غیر خطی حاکم بر جریان و انتقال جرم در یک محیط متخلخل اشباع با استفاده از چند روش گالرکین ناپیوسته منقطع سازی گردید و از روش ضمنی برای منقطع سازی زمانی استفاده شد. در اینجا هر دو نوع شرط مرزی دیریشله و کوشی برای معادله انتقال جرم اعمال شد. بمنظور جلوگیری از خطای...

full text

روش گالرکین ناپیوسته برای حل معادلات ماکسول

چکیده همواره در علوم مختلف با معادلاتی روبرو هستیم که در بسیاری از موارد یافتن جواب تحلیلی برای آن ها پیچیده و گاهی حتی غیر ممکن است. لذا در این موارد سعی می شود که با استفاده از روش های عددی مناسب تقریب نزدیکی از جواب واقعی را به دست آورند. در این میان روش های گالرکین ناپیوسته برای حل معادلات دیفرانسیل مورد استفاده قرار می گیرند. این روش ها دارای کارایی و دقت کافی به همراه سرعت همگرایی بالا م...

15 صفحه اول

تحلیل معادله شرودینگر وابسته به زمان سه بعدی به روش بدون المان پتروف-گالرکین محلی

در این مقاله، تحلیل معادله شرودینگر وابسته به زمان در فضای سه بعدی، به روش بدون المان پتروف-گالرکین موضعی بر پایه شکل ضعیف موضعی و تقریب حداقل مربعات متحرک ارائه شده است. همچنین تابع آزمون مورد استفاده در روش مورد نظر، تابع پله هویساید در نظر گرفته می‌شود. نقاط گره‌ای در سرتا‌سر دامنه کلی که به صورت مکعبی است، به طور منظم پخش می‌شوند که این نقاط برای تقریب متغییرهای مرزی و داخلی مورد استفاده قر...

full text

ارائه مدل عددی گالرکین ناپیوسته IMPES برای مدلسازی آلاینده های زیر زمینی امتزاج ناپذیر با کمک روش Lax-Wendroff

سابقه و هدف مدلسازی عددی جریان های امتزاج ناپذیر در محیط متخلخل از جمله مباحثی است که بدلیل کاربرد آنها در پایش انتقال آلاینده ها، حرکت آب و نفت در مخازن نفت و علوم هیدرولوژی همواره مورد توجه محققین قرار می گیرد. در این تحقیق، به ارائه یک مدل عددی دوبعدی گالرکین ناپیوسته جریانهای امتزاج ناپذیر در محیط متخلخل با استفاده از استراتژی حل معادلات فشار-ضمنی درجه اشباع صریح (IMPES) مرتبه بالا پرداخته ...

full text

روش موجک گالرکین تیلور برای معادله برگرز

در این پایان نامه یک روش موجک گالرکین تیلور ‎lr{(w-tgm)}‎ برای حل عددی معادله ی برگرز ارائه می شود. ابتدا گسسته سازی زمانی بر مبنای تیلور-اویلر تعمیم یافته انجام می شود، سپس روش گالرکین با استفاده از موجک برای متغیر مکانی اعمال می شود. مجموعه معادلات خطی بدست آمده در فرآیند، بوسیله ی تقریب، فاکتورگیری و براساس روش های صریح و ساده حل می شوند و نتایج جواب مقایسه می شوند. بنابراین معادله ی برگرز ب...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023